Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fluids Barriers CNS ; 21(1): 5, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200564

RESUMEN

BACKGROUND: Appropriate interactions between antiretroviral therapies (ART) and drug transporters and metabolizing enzymes at the blood brain barrier (BBB) are critical to ensure adequate dosing of the brain to achieve HIV suppression. These proteins are modulated by demographic and lifestyle factors, including substance use. While understudied, illicit substances share drug transport and metabolism pathways with ART, increasing the potential for adverse drug:drug interactions. This is particularly important when considering the brain as it is relatively undertreated compared to peripheral organs and is vulnerable to substance use-mediated damage. METHODS: We used an in vitro model of the human BBB to determine the extravasation of three first-line ART drugs, emtricitabine (FTC), tenofovir (TFV), and dolutegravir (DTG), in the presence and absence of cocaine, which served as our illicit substance model. The impact of cocaine on BBB integrity and permeability, drug transporters, metabolizing enzymes, and their master transcriptional regulators were evaluated to determine the mechanisms by which substance use impacted ART central nervous system (CNS) availability. RESULTS: We determined that cocaine had a selective impact on ART extravasation, where it increased FTC's ability to cross the BBB while decreasing TFV. DTG concentrations that passed the BBB were below quantifiable limits. Interestingly, the potent neuroinflammatory modulator, lipopolysaccharide, had no effect on ART transport, suggesting a specificity for cocaine. Unexpectedly, cocaine did not breach the BBB, as permeability to albumin and 4 kDa FITC-dextran, as well as tight junction proteins and adhesion molecules remained unchanged. Rather, cocaine selectively decreased the pregnane-x receptor (PXR), but not constitutive androstane receptor (CAR). Consequently, drug transporter expression and activity decreased in endothelial cells of the BBB, including p-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 4 (MRP4). Further, cytochrome P450 3A4 (CYP3A4) enzymatic activity increased following cocaine treatment that coincided with decreased expression. Finally, cocaine modulated adenylate kinases that are required to facilitate biotransformation of ART prodrugs to their phosphorylated, pharmacologically active counterparts. CONCLUSION: Our findings indicate that additional considerations are needed in CNS HIV treatment strategies for people who use cocaine, as it may limit ART efficacy through regulation of drug transport and metabolizing pathways at the BBB.


Asunto(s)
Infecciones por VIH , Trastornos Relacionados con Sustancias , Humanos , Barrera Hematoencefálica , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Células Endoteliales , Proteínas de Neoplasias , Proteínas de Transporte de Membrana , Sistema Nervioso Central , Tenofovir , Infecciones por VIH/tratamiento farmacológico , Pregnanos
2.
Microbiol Spectr ; 9(3): e0191021, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34937173

RESUMEN

Due to their phylogenetic proximity to humans, nonhuman primates (NHPs) are considered an adequate choice for a basic and preclinical model of sepsis. Gram-negative bacteria are the primary causative of sepsis. During infection, bacteria continuously release the potent toxin lipopolysaccharide (LPS) into the bloodstream, which triggers an uncontrolled systemic inflammatory response leading to death. Our previous research has demonstrated in vitro and in vivo using a mouse model of septic shock that Fh15, a recombinant variant of the Fasciola hepatica fatty acid binding protein, acts as an antagonist of Toll-like receptor 4 (TLR4) suppressing the LPS-induced proinflammatory cytokine storm. The present communication is a proof-of concept study aimed to demonstrate that a low-dose of Fh15 suppresses the cytokine storm and other inflammatory markers during the early phase of sepsis induced in rhesus macaques by intravenous (i.v.) infusion with lethal doses of live Escherichia coli. Fh15 was administered as an isotonic infusion 30 min prior to the bacterial infusion. Among the novel findings reported in this communication, Fh15 (i) significantly prevented bacteremia, suppressed LPS levels in plasma, and the production of C-reactive protein and procalcitonin, which are key signatures of inflammation and bacterial infection, respectively; (ii) reduced the production of proinflammatory cytokines; and (iii) increased innate immune cell populations in blood, which suggests a role in promoting a prolonged steady state in rhesus macaques even in the presence of inflammatory stimuli. This report is the first to demonstrate that a F. hepatica-derived molecule possesses potential as an anti-inflammatory drug against sepsis in an NHP model. IMPORTANCE Sepsis caused by Gram-negative bacteria affects 1.7 million adults annually in the United States and is one of the most important causes of death at intensive care units. Although the effective use of antibiotics has resulted in improved prognosis of sepsis, the pathological and deathly effects have been attributed to the persistent inflammatory cascade. There is a present need to develop anti-inflammatory agents that can suppress or neutralize the inflammatory responses and prevent the lethal consequences of sepsis. We demonstrated here that a small molecule of 14.5 kDa can suppress the bacteremia, endotoxemia, and many other inflammatory markers in an acute Gram-negative sepsis rhesus macaque model. These results reinforce the notion that Fh15 constitutes an excellent candidate for drug development against sepsis.


Asunto(s)
Antiinflamatorios/administración & dosificación , Bacteriemia/tratamiento farmacológico , Fasciola hepatica/metabolismo , Proteínas de Unión a Ácidos Grasos/administración & dosificación , Bacterias Gramnegativas/fisiología , Proteínas del Helminto/administración & dosificación , Animales , Antiinflamatorios/metabolismo , Bacteriemia/genética , Bacteriemia/inmunología , Bacteriemia/microbiología , Citocinas/genética , Citocinas/inmunología , Modelos Animales de Enfermedad , Fasciola hepatica/química , Fasciola hepatica/genética , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Bacterias Gramnegativas/clasificación , Bacterias Gramnegativas/genética , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Humanos , Macaca mulatta , Masculino , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología
3.
Animal Model Exp Med ; 2(4): 326-333, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31942564

RESUMEN

The aim of this study was to identify inflammation-associated markers during the early phase of sepsis in rhesus macaque. Four rhesus macaques were given an intravenous dose of 1010 CFU/kg of E. coli. Blood samples were collected before, or 30 minutes, 2, 4, 6 and 8 hours after E. coli infusion. Physiological parameters, bacteremia, endotoxemia, C-reactive protein (CRP), procalcitonin (PCT), and plasma cytokines/chemokines were determined for each animal. Bacteremia was present in all animals from 30 minutes to 3 hours after E. coli infusion whereas endotoxin was detected during the full-time course. CRP and PCT levels remained at detectable levels during the whole experimental window suggesting an ongoing inflammatory process. Signature cytokines and chemokines such as TNF-α, MIP-1α, and MIP-1ß peaked about 2 hours after E. coli infusion and decreased thereafter. Plasma IL-6, IL-12p40, IFN-γ, and IL-1Ra, as well as I-TAC, MIG, IP-10 and MCP-1, remained at detectable levels after 4 hours of E. coli infusion. This nonhuman primate model could be useful for the assessment of new therapeutics aiming to suppress key inflammatory markers throughout sepsis early phases.

4.
mSphere ; 3(6)2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30567900

RESUMEN

Sepsis caused by Gram-negative bacteria is the consequence of an unrestrained infection that continuously releases lipopolysaccharide (LPS) into the bloodstream, which triggers an uncontrolled systemic inflammatory response leading to multiorgan failure and death. After scrutinizing the immune modulation exerted by a recombinant Fasciola hepatica fatty acid binding protein termed Fh15, our group demonstrated that addition of Fh15 to murine macrophages 1 h prior to LPS stimulation significantly suppresses the expression of proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1ß (IL1-ß). The present study aimed to demonstrate that Fh15 could exert a similar anti-inflammatory effect in vivo using a mouse model of septic shock. Among the novel findings reported in this article, (i) Fh15 suppressed numerous serum proinflammatory cytokines/chemokines when injected intraperitoneally 1 h after exposure of animals to lethal doses of LPS, (ii) concurrently, Fh15 increased the population of large peritoneal macrophages (LPMs) in the peritoneal cavity (PerC) of LPS-injected animals, and (iii) Fh15 downregulated the expression on spleen macrophages of CD38, a cell surface ectoenzyme with a critical role during inflammation. These findings present the first evidence that the recombinant parasitic antigen Fh15 is an excellent modulator of the PerC cell content and in vivo macrophage activation, endorsing Fh15's potential as a drug candidate against sepsis-related inflammatory response.IMPORTANCE Sepsis is a potentially life-threatening complication of an infection. Sepsis is mostly the consequence of systemic bacterial infections leading to exacerbated activation of immune cells by bacterial products, resulting in enhanced release of inflammatory mediators. Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is a critical factor in the pathogenesis of sepsis, which is sensed by Toll-like receptor 4 (TLR4). The scientific community highly pursues the development of antagonists capable of blocking the cytokine storm by blocking TLR4. We report here that a recombinant molecule of 14.5 kDa belonging to the Fasciola hepatica fatty acid binding protein (Fh15) is capable of significantly suppressing the LPS-induced cytokine storm in a mouse model of septic shock when administered by the intraperitoneal route 1 h after a lethal LPS injection. These results suggest that Fh15 is an excellent candidate for drug development against endotoxemia.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Citocinas/metabolismo , Proteínas de Unión a Ácidos Grasos/administración & dosificación , Proteínas del Helminto/administración & dosificación , Lipopolisacáridos/inmunología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/fisiología , Choque Séptico/patología , ADP-Ribosil Ciclasa 1/análisis , Animales , Células Cultivadas , Citosol/química , Modelos Animales de Enfermedad , Ácidos Grasos/análisis , Inyecciones Intravenosas , Glicoproteínas de Membrana/análisis , Ratones , Proteínas Recombinantes/administración & dosificación , Bazo/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...